

Non invasive assessment of the inflammatory states using the TSI index

Jaume Millán¹, Erik Weber Jensen¹, Montserrat Vallverdu¹, Gertrude Nieuwenhuijs-Moeke², Michel Struys²

- 1. Biomedical engineering, School of Industrial Engineering of Barcelona (ETSEIB) Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
- 2. Department of Anesthesiology, University Medical Center of Groningen, The Netherlands

INTRODUCTION:

Inflammation monitoring can support the early identification of systemic inflammatory response syndrome (SIRS) and sepsis [1,2]. As one of the main causes of death in intensive care units, sepsis demands prompt diagnosis and treatment. Many commonly used biomarkers are either invasive or unsuitable for continuous, real-time assessment [3]. Heart rate variability (HRV) provides insight into autonomic function and inflammatory status [4,5]. Anesthesia can affect HRV [6]. The TSI index compensates for the effects of anesthesia in HRV using the Brain Activity Index, which quantifies the level of consciousness. The non-invasive Trending of Sepsis and Inflammation (TSI) index combines HRV with EEG-based consciousness monitoring to evaluate inflammatory activity and estimate sepsis risk [7].

OBJECTIVE:

To validate the TSI index in abdominal surgery and HIPEC procedures.

METHODS:

A database was used for this post-hoc study. Approvals from the local ethics committees at Quirónsalud and UMCG were obtained for the original data. The study included cohorts of abdominal surgery patients at Quirónsalud Barcelona (n=41) and HIPEC patients at UMCG (n=62). The TSI was derived using RMSSD, heart rate, LF/HF ratio, and the EEG-based Brain Activity (BA) index, measured with the CoreSys One system (1 ECG and 2 EEG channels, sampled at 1024 Hz). Data recordings were segmented into phases: for Quirónsalud patients, basal and intraoperative phases; for UMCG patients, basal and HIPEC phases.

RESULTS:

TSI demonstrated significant differences (all p<0.05) across all pairwise comparisons between clinical states (surgical/HIPEC phases). Figure 1 showcases the distribution of the TSI across the different clinical states.

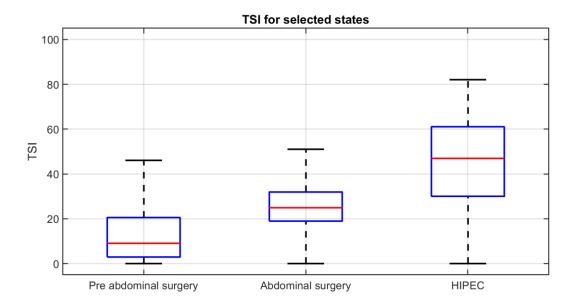


Figure 1 TSI values across clinical states. Surgical patients (Quirónsalud Barcelona, n=41) shown at pre-surgery and intraoperative (abdominal surgery) phases. HIPEC patients (UMCG Groningen, n=62) showcasing the HIPEC phase. TSI is derived from CoreSys One monitor (ECG and EEG).

CONCLUSIONS:

TSI reliably differentiates inflammatory states across various clinical settings and reflects severity levels, demonstrating its potential for non-invasive monitoring.

REFERENCES:

- 1. Singer, M., et al. "The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)." *JAMA*, vol. 315, no. 8, 2016, pp. 801–810. doi.org/10.1001/jama.2016.0287.
- 2. Kaukonen, K. M., et al. "Systemic Inflammatory Response Syndrome Criteria in Critically III Patients." *Intensive Care Medicine*, vol. 41, no. 3, 2015, pp. 404–412. doi.org/10.1007/s00134-014-3524-0.
- 3. Ljungström, L., et al. "Diagnostic Accuracy of Procalcitonin, Neutrophil-Lymphocyte Count Ratio, and C-Reactive Protein for Infection in Critically III Patients." *Critical Care*, vol. 23, 2019, p. 318. doi.org/10.1186/s13054-019-2687-z.

- 4. Papaioannou, V. E., et al. "Heart Rate Variability as a Diagnostic Tool in Critical Care." *BioMedical Engineering OnLine*, vol. 12, 2013, article 95. doi.org/10.1186/1475-925X-12-95.
- 5. Tracey, K. J. "The Inflammatory Reflex." *Nature*, vol. 420, no. 6917, 2002, pp. 853–859. doi.org/10.1038/nature01321.
- 6. Mazzeo, A. T., La Monaca, E., Di Leo, R., Vita, G., & Santamaria, L. B. (2011). Heart rate variability: a diagnostic and prognostic tool in anesthesia and intensive care. *Acta Anaesthesiologica Scandinavica*, *55*(7), 797-811.
- 7. Millan i Ichon, J., et al. "A Novel Index for the Assessment of the Inflammatory Response and the Risk of Sepsis." *Intensive Care Medicine Experimental*, vol. 12, no. S1, 2024, art. 000355, pp. 87, doi.org/10.1186/s40635-024-00658-z.