

EEG and Sedation Response of Dexmedetomidine During Drug Induced Sleep Endoscopy

Lichy Han, MD, PhD

International Society for Anaesthetic Pharmacology 2022

Dexmedetomidine & Drug Induced Sleep Endoscopy

- Dexmedetomidine has many beneficial effects: limited respiratory depression, analgesia, anxiolysis, and decreased emergence delirium
- Commonly used for drug induced sleep endoscopy (DISE), sometimes as the sole agent
- Ongoing challenges with prolonged recovery and determining sedation level, even with current EEG monitoring

Study Question

Can spectral and complexity measures of sedation derived from EEG help guide dexmedetomidine usage?

Study Design

- 51 adult patients, IRB-approved
- Drug induced sleep endoscopy for diagnosis of obstructive sleep apnea
- ASA class 1, 2, or 3

- Dexmedetomidine infusion: 1.5mcg/kg bolus followed by a 1.5mcg/kg/hr infusion
- 2 IVs, one for the infusion and the other for blood draws
- No preprocedural sedation or other sedatives

- RASS score recorded every 5 minutes
- Continuous 5-channel EEG recording via SedLine
- Spectral edge frequency 95 & Correlation Dimension calculation

Patient Data

Increasing Dex leads to Decreasing RASS, SEF95, and CD

Targeting Sedation Based on CD

Dex Infusion Simulations Targeting Correlation Dimension

Conclusions

- Increasing levels of dexmedetomidine resulted in significant decreases in the RASS score, SEF95, and correlation dimension
- Correlation dimension captured the depth of sedation more robustly than RASS score and SEF95
- Simulations verified proposed correlation dimension target values with currently used dexmedetomidine infusion doses
- Spectral and complexity measures derived from EEG have the potential to aid providers in titrating depth of sedation under dexmedetomidine sedation

Acknowledgments

David R. Drover

Robson Capasso

Sarah Eagleman

Vladimir Nekhendzy

Marianne Chen

Amit Saxena

